Package: caRamel 1.4
caRamel: Automatic Calibration by Evolutionary Multi Objective Algorithm
The caRamel optimizer has been developed to meet the requirement for an automatic calibration procedure that delivers a family of parameter sets that are optimal with regard to a multi-objective target (Monteil et al. <doi:10.5194/hess-24-3189-2020>).
Authors:
caRamel_1.4.tar.gz
caRamel_1.4.zip(r-4.5)caRamel_1.4.zip(r-4.4)caRamel_1.4.zip(r-4.3)
caRamel_1.4.tgz(r-4.4-x86_64)caRamel_1.4.tgz(r-4.4-arm64)caRamel_1.4.tgz(r-4.3-x86_64)caRamel_1.4.tgz(r-4.3-arm64)
caRamel_1.4.tar.gz(r-4.5-noble)caRamel_1.4.tar.gz(r-4.4-noble)
caRamel.pdf |caRamel.html✨
caRamel/json (API)
NEWS
# Install 'caRamel' in R: |
install.packages('caRamel', repos = c('https://fzao.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/fzao/caramel/issues
Last updated 4 months agofrom:a1e82c4b9a. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win-x86_64 | OK | Nov 20 2024 |
R-4.5-linux-x86_64 | OK | Nov 20 2024 |
R-4.4-win-x86_64 | OK | Nov 20 2024 |
R-4.4-mac-x86_64 | OK | Nov 20 2024 |
R-4.4-mac-aarch64 | OK | Nov 20 2024 |
R-4.3-win-x86_64 | OK | Nov 20 2024 |
R-4.3-mac-x86_64 | OK | Nov 20 2024 |
R-4.3-mac-aarch64 | OK | Nov 20 2024 |
Exports:boxescaRamelCextrapCinterpCrecombinationCusecovardecrease_popDimprovedominatedominateddownsizematvcovnewXvalparetoplot_caramelplot_paretoplot_populationrselectval2rankvol_splx
Dependencies:abindgeometrylinproglpSolvemagicRcppRcppProgress
Dealing with constraints
Rendered fromConstraints.Rmd
usingknitr::rmarkdown
on Nov 20 2024.Last update: 2020-09-16
Started: 2020-09-16
Using a Python function with caRamel
Rendered fromPythonFunction.Rmd
usingknitr::rmarkdown
on Nov 20 2024.Last update: 2020-10-01
Started: 2020-09-29
Compute several Pareto fronts for a better global result
Rendered fromMultiPareto.Rmd
usingknitr::rmarkdown
on Nov 20 2024.Last update: 2021-03-10
Started: 2021-03-10
Three ways to call the user functions
Rendered fromCarallel.Rmd
usingknitr::rmarkdown
on Nov 20 2024.Last update: 2020-10-01
Started: 2020-10-01
Multi-caRamel optimization with MPI
Rendered fromMPI.Rmd
usingknitr::rmarkdown
on Nov 20 2024.Last update: 2021-03-10
Started: 2021-03-02
Sensitivity of the Pareto front
Rendered fromSensitivity.Rmd
usingknitr::rmarkdown
on Nov 20 2024.Last update: 2020-09-16
Started: 2020-09-16
Using caRamel on two benchmark tests
Rendered fromBenchmark.Rmd
usingknitr::rmarkdown
on Nov 20 2024.Last update: 2020-10-01
Started: 2020-09-16